重塑计算
芯片技术多元化发展加剧。首先包括微软、 Meta 在内的科技企业纷纷推出自研高性能 CPU 和 AI 加速芯片,其次,除了传统的 x86 架构以外,其他芯片架构的芯片也加入到高性能计算领域,并由落地应用:位于葡萄牙的集群 Deucalion 将采用与日本富岳集群相同的 ARM 架构高性能芯片 A64FX;算能科技日前向山东大学交付国内首台RISC-V服务器集群,该集群拥有48颗RISC-V高性能芯片SG042。
存算一体,突破“内存墙”。传统芯片均采用冯诺依曼计算架构,改架构的“内存墙”问题随着算力的不断提升而越发明显,逐渐成为芯片性能进一步突破的瓶颈。业界纷纷采用存算一体技术思路,提升现有芯片性能的同时,研发神经形态计算芯片,探索“破墙”之路。Intel 、 AMD 和英伟达纷纷在各自最新的芯片产品中引入 HBM 和 LPDDR 等近存计算(Near-Memory Computing)技术;而神经形态计算(Neuromophic Computing)被认为是“后冯诺依曼时代”突破“内存墙”的重要计算技术路径。受人类大脑原理的启发,神经形态计算芯片通过存内计算(Compute in Memory)方式,实现高算力的同时实现超低功耗。
量子比特制备路径之争将更激烈。量子比特的制备,是量子计算机研制的起点。今年,超导量子、光量子、离子阱、冷原子等多条量子比特制备路径均有不错的进展,“谁才是未来量子计算最终的技术路线”之争将更加激烈。
QPU 发展数量与质量兼顾。虽然 IBM 发布1000+量子比特QPU, Atom Computing 宣称创造 1000 +原子阵列,但IBM 最新发布的芯片互联技术,以及哈佛大学和QuEra等联合发布的逻辑量子比特制备和纠错研究成果等,说明了QPU的发展,仍然处在追求比特数量和,以及关注诸如纠错能力、可扩展性等更符合实用需要的技术。
智能升维
刚刚过去的一年,注定是人工智能发展史上具有里程碑意义的大年。生成式人工智能的惊人进步,让我们深切感受到未来AGI的巨大潜力和无限前景。
大模型从理解到生成,从感知到决策,能力不断升。加上多模态、Agent、以及具身智能等方向的探索,AI有望完成“感知—决策—行动”的闭环。
多模态是人类世界的本来样貌,AGI的发展趋势一定是朝向多模态。技术将从文本、图像、视频(2D和3D),再到声、光、电,甚至分子、原子等各类模态,而且具备跨模态迁移的特性。未来理想的框架是“多模态的对齐和融合 + 统一的编码器和解码器”。12月6日微软发布的Copilot中,将GPT-4V的视觉能力与Bing搜索相结合,为用户提供更好的图像理解和生成体验。7日,谷歌发布Gemini,主打原生大模型,无缝跨文本、图像、视频、音频和代码。谷歌称,Gemini是第一个在MMLU(大规模多任务语言理解)方面优于人类专家的模型,准确率达到90%(人类专家为89.8%)。
比尔盖茨近日撰文:AI Agent将是下一个平台,人工智能即将彻底改变人们使用计算机的方式并颠覆软件行业。在不久的将来,任何上网的人都将能够拥有由人工智能驱动的个人助手,远超今天的技术水平。智能体由四个主要部分组成,包括多模态大模型(LMM)、长期记忆(Memory)、规划(Planning)和工具使用(Tool Use)。业界AI智能体愈来愈多,如微软AutoGen,发布短短两周内,星标量就从390增到10K,并在 Discord上吸引了5000多名成员。它允许多个智能体扮演各种角色,如程序员、设计师,或是各种角色的组合,仅通过对话就可以完成编程任务。
大模型正在向端侧转移,AI推理将在手机、PC、耳机、音箱、XR、汽车,以及其它可穿戴式新型终端上运行。端侧大模型具有一些独特优势,如,本地数据处理效率更高,节省云端服务器带宽和算力成本,对用户数据更好的隐私保护,开启更多交互新方式、新体验等。
目前,一些手机已经在利用本地 AI支持如暗光拍摄、降噪和人脸解锁等功能。未来借助端侧大模型,并结合向量化后的各类个人数据,用户可以跟手机进行更流畅的交互,实现各种原生操作和功能。如,Humane 正式推出 AI Pin,搭载GPT4,可实现语音交互,也可以投影在手掌上交互。高通推出骁龙8 Gen3 ,支持终端侧运行100亿参数的模型。苹果最新的M3芯片支持端侧推理,且计划推出更智能的Siri,为端侧大模型生态做积极准备。
端侧大模型应用具备三种可能性,首先是端侧原生集成AI模型,类似siri,帮助用户调用其他软件,从而可能成为硬件新入口。其次,将大模型作为独立app,例如MIT一位教授将开源模型集成在手机端做一个独立app;第三,将大模型接入即时通讯软件作为chatbot,例如What‘s App已经集成了Meta AI。
在人形机器人领域,有三个值得关注的趋势:1.在思考能力层面,大模型的嵌入极大提升机器人感知环境、分解任务、规划流程以及与环境交互的能力;2.在训练平台方面,云边结合的分布式计算平台发展,强化了机器人的训练和分析决策速率;3.在执行层面,以“灵巧手”为代表的关键技术,进一步强化了人形机器人末端执行应用能力,尤其是微操作、近操作等能力。
在ITF World 2023大会上,英伟达创始人黄仁勋公开表示,人工智能的下一次浪潮将是具身智能,即能理解、推理以及与真实物理世界互动的智能系统。
在Chatgpt出现之前,大模型与具身智能领域的结合更多出现在感知层面,在海量数据集上预训练的视觉模型,只是作为一种更好的表征提取器来提升机器人在场景中的感知能力,而具体的规划与动作执行,依然需要大量的具身场景数据进行训练。AI大模型,以及后续的多模态,可以从语音、视觉感知、决策、控制等多方面为机器人更好进行学习训练和进化。
过往机器人的控制模式是预设轨迹,导致机器人的控制与行动比较受局限。李飞飞团队在2023年发布的VoxPoser系统,实现将LLM(大语言模型)和VLM(视觉语言模型)接入机器人,前者用来理解人类指令并生成交互代码,实现与后者的交互,而VLM进行规划路径,生成操作指示地图3D Value Map。两者能力结合从而实现通过自然语言指令与机器人交互,可将复杂指令转化为具体行动规划,而无需预设数据和提前训练,同时,系统也具备很强的抗干扰能力,可以在遇到干扰因素时快速重新规划。除此之外,VoxPoser还产生了四方面的涌现能力,即评估物理特性、行为常识推理、精度矫正、基于视觉的多步操作。
PaLM-E和RT-2有两个有代表性的模型。前者是年初谷歌公司与柏林工业大学人工智能研究小组合作推出的多模态具像化视觉语言模型(VLM)。模型参数规模达到5620亿,集成用于控制机器人的视觉与语言,特征是无需重新训练即可执行各种任务。收到指令后,PaLM-E可以自动给机器人生成行动计划,然后自行执行。这是通过分析来自机器人摄像头的数据来实现整个过程,不需要对场景进行预处理,也不许提前对数据进行人工注释,机器人的控制更加自主。
Robotics Transformer 2(RT-2)是由Google DeepMind突出的一个用于控制机器人的视觉-语言-动作(VLA)的AI模型。RT-2使用经过精调的LLM来输出运动控制命令,可移植性训练数据中未明确包含的任务,并在新出现技能评估中将基线模型的表现提升了3倍。
二、云边结合的分布式算力平台发展强化了机器人的训练速率,降低产业化门槛。
机器人是 AI、算力、IoT、底层硬件等各种技术的集大成者。从关键场景垂直应用,向规模化应用发展。通过云-边-端融合的机器人系统和架构,例如云端运行超大模型Nvidia A100 GPU,边缘运行小模型。让机器人达到数百万千万级水平,从而降低价格成本,实现大规模商用。
云服务机器人是指将机器人的核心计算和智能部分部署在云端服务器,借助云计算技术提供更大的计算能力和资源,以实现更强大、更高效的数据处理和应用。“云端大脑+本地机体”或“云端服务”机器人将成为规模化推广与应用的重要模式之一。
Google 专门开发协议,将模型部署在多TPU 云服务实现实时推理。实验结果表明,基于现成的VLM 模型PaLM-E 和PaLI-X,RT-2 取得了良好的泛化和涌现性能。相比于独立的机器人本体,连接云端大脑后的机器人拥有以下四个核心优势:信息和知识共享,平衡计算负载,协同合作,独立于本体持续升级。边缘计算的引入将解决终端能力受限和云计算的实时响应的问题,增强机器人云端大脑的实时响应能力。在共享计算、存储、通信资源基础上,智能算法持续从(云端)大数据和(本地端)个性化数据中抽取知识,逐步从特定场景适应到通用场景,最终实现机器人即服务(Robot As A Service)的长期愿景。
特斯拉计划利用Dojo对海量的视频数据进行无监督学习,以加速特斯拉的Autopilot和完全自动驾驶(FSD)系统的迭代,同时为特斯拉的人形机器人Optimus提供算力支持。Dojo将加速人形机器人的开发,其能够为机器人的神经网络训练提供算力支持,更快速地处理海量数据,有望推动机器人加速落地。
腾讯Robotics X机器人实验室通过引入预训练模型和强化学习技术,可以让机器狗分阶段进行学习,有效的将不同阶段的技能、知识积累并存储下来,让机器人在解决新的复杂任务时,不必重新学习,而是可以复用已经学会的姿态、环境感知、策略规划多个层面的知识,并“举一反三”。
三、多感知、多自由度功能融合的灵巧手强化了人形机器人的微操作、近操作能力。
灵巧手是人形机器人执行动作的最终零件,十分重要且复杂,对电机性能要求较高。灵巧手作为机器人实现操作的终端工具十分重要。空心杯电机、触觉感知传感器的发展,提升了人形机器人末端执行器的灵敏度和鲁棒性。
特斯拉人形机器人擎天柱灵巧手有6个执行器,可实现11个自由度,其中空心杯电机为核心部件。人形机器人的手指空间狭小,因而人形机器人手指关节需配备更多小型化且能够输出较大力的电机。属于直流永磁伺服电动机的空心杯电机完美契合人形机器人对应手指关节轻量化、高精度等需求。空心杯电机具有功率密度高、能量转化效率高、响应快,运行平稳等特点,与灵巧手的需求高度适配。
腾讯Robotics X实验室公布最新机器人研究进展,首次展示在灵巧操作领域的成果,推出自研机器人灵巧手 TRX-Hand和机械臂 TRX-Arm。其中,灵巧手TRX-Hand拥有像人手一样灵活的操作能力,可适应不同场景,灵活规划动作,自主完成“操作”。而机械臂TRX-Arm针对人居环境自主研发,拥有七自由度和拟人的特性,具有运动灵巧、爆发力强、触控一体以及柔顺安全等特点。
AI已成为基因组学创新的关键驱动力。前基因组时代(1958-1980s),生物信息学作为生物学、计算机科学、数学和统计学交叉学科出现,人类专家初步探索将AI技术应用于基因数据分析,例如使用模式识别来预测蛋白质结构和功能、使用统计学习方法来理解基因表达数据。基因组时代(1990s-2010s),人类专家能够系统分析和比较整个物种的遗传信息,并利用AI进行基因组数据解析,辅助基因序列比对、变异检测、功能注释和复杂疾病的遗传关联分析,显著提高了数据分析的效率和准确性;后基因组时代(2010s-),研究重点转向基因功能的综合分析、基因表达调控、个体遗传差异分析等,深度学习、AI大模型成为关键驱动技术,用于处理复杂海量多模态数据,实现单细胞测序,优化基因编辑策略,促进智能化生物育种、药物发现以及个性化健康预测、基因疗法发展。
利用大模型破解复杂生物问题成为布局热点。2023年8月,清华大学智能产业研究院与水木分子发布多模态生物医药百亿参数大模型BioMedGPT,在数据层面整合了基因、分子、细胞、蛋白、文献、专利、知识库等多源异构的数据。9月,《上海市加快合成生物创新策源打造高端生物制造产业集群行动方案(2023—2025年)》中提出支持建设AI蛋白质多模态生成大模型等干湿结合AI生物大模型。谷歌旗下深度思维公司(Google DeepMind)也于9月宣布开发出新的AI大模型AlphaMissense,在人类蛋白质中成功预测了7100万个可能的错义突变(基因突变的一类),并将89%的突变分类为可能致病或可能良性;11月,深度思维再次宣布,AlphaFold预测范围从蛋白质结构扩展至DNA、RNA等生物分子。
AI+生物技术正在加速育种4.0时代到来。2023年中央一号文件要求“全面实施生物育种重大项目,加快玉米大豆生物育种产业化步伐”。中国科学院钱前院士指出,全球种业发展正迎来生物技术与信息技术融合的“生物技术+人工智能+大数据”智能化时代(即育种4.0时代, 1.0为农家育种时代、2.0为杂交育种时代、3.0为分子育种时代)。基因编辑方面,通过AI对于大量基因组数据的预测和分析,可以帮助提升特定基因位置添加、删除或替换DNA序列的操作精准度,增强作物抗病性、耐逆性、营养价值或产量,并减少传统转基因技术(将一个物种的基因转移到另一个物种中)带来的基因表达不稳定或不可预测风险。2023年4月,农业农村部发布《2023年农业用基因编辑生物安全证书(生产应用)批准清单》,舜丰生物获得首个植物基因编辑安全证书;此外,中国科学院遗传与发育生物学研究所将AI与基因编辑结合,开发的PrimeRoot系统在水稻和玉米中实现了长达11.1Kb的大片段DNA高效精准定点插入。表观合成方面,中国农业科学院生物技术研究所通过整合多组学数据,构建智能模型,预测并优化人工设计的合成表观回路,大幅度提升表观合成的精准度,并提出设计和创制智能作物(SMART Crop)的途径和路线图,为通过基因编辑之外的技术来培育聚合多种理想性状的作物新种质提供了新思路。
数实交互
数字交互引擎是在文化创意场景下产生、伴随数字文化产业升级而不断实现技术迭代的一类工具集,集成了物理模拟、3D建模、实时渲染等多种前沿技术,是文化科技融合的典型产物。数字交互引擎主要由图形模块、仿真模块、实时渲染等模块构成,它以软件代码包形式创造虚拟场景,动态呈现其外观变化,支持其与物理世界进行实时交互。
在发展前期,数字交互引擎主要应用于游戏场景,在行业场景下被称为“游戏引擎”;在服务游戏产业高效构建虚拟世界、与现实世界高质量交互的过程中,不断实现技术迭代、提升跨平台通用能力,逐步成为跨行业、跨场景应用的数字交互引擎。当前,数字交互引擎已经应用于文旅、汽车、工业等多元领域,成为构建实时虚拟世界、实现虚实交互的关键工具集。
随着以数字交互引擎为代表的游戏科技进入游戏之外的更多领域,游戏将迎来新的产业扩容,成为不断创造新价值与新可能的“超级数字场景”。游戏作为前沿科技的“试炼场”,在深度跨界、产业扩容的过程中,必然将推动数字交互引擎进一步与多种前沿技术形成广泛连接,其中,数字交互引擎与AIGC的加速融合、互相驱动将成为重要趋势。
首先,数字交互引擎为AIGC爆发提供了重要推动力,并有望助力AIGC迈过“深水区”。游戏为AI提供了测试与训练的重要环境,促进AI决策更加智能;同时,AIGC当前在3D内容侧的能力仍存障碍,游戏行业的PCG(程序化内容生成)技术已大量应用于3D内容制作,两者的结合可助力AIGC提升3D侧能力。未来,数字交互引擎及其创建的大量3D数字资产也将为AI大模型训练提供重要支持。
其次,AIGC技术融入数字交互引擎,将加速数字文化产业的工业化进程。当前,AIGC已渗透进数字文化制作的多个环节,包括动画、语音、美术、3D资产及场景等领域,简化内容开发流程。未来数字交互引擎将进一步集成多种AIGC能力,提升影视、游戏、广告等行业的智能化、工业化水平。
当前,面向大众的游戏创作工具已经初现雏形,但数字交互引擎要真正走向大众化,还需要从技术、生态、商业模式等维度积累资源、构建能力,实现高质量的画面效果及实时算力支撑,培育丰富的开发者与多元内容体系,构建可持续的商业模式以推动创作者变现,进一步聚集内容开发者,真正推动“交互式内容”的大众化时代到来。
当前,数字交互引擎的应用正在从社会消费端向生产端延伸:不仅作为文化数字化的重要技术支撑,助力文化业态打破时空局限、实现多维升级;也走向制造业领域的“新型工业软件”,支持实时、智能、高度可视化的数字场景,帮助企业生产提质增效。
数字交互引擎凭借其在数据可视化、实时渲染、友好交互等方面的能力,已成为工业数字孪生重要的构建及运行平台,并支撑各行各业的数字孪生在应用层面提升实时性,使数字孪生技术在实时交互、灵活部署方面更进一步。数字交互引擎与数字孪生技术的结合,不仅可在数字空间中将物理实体构建为可视化、智能化的“副本”,还能支持数据的实时感知接入、可视化展现,实现3D模型的实时渲染和展示,支持用户对孪生体的快速查看、调用和修改,为汽车、民航等工业制造领域提供实时监控管理、演练测试的数字场景。
伴随着人工智能技术的不断进步,AIGC技术在多媒体的文字、图片生成等方面已经实现商用。未来,AIGC技术将继续聚焦生成更加稳定的视频和3D内容。同时,在垂直领域如数字人、超分、老片修复等方向,AI技术将不断强化多媒体的能力,为用户提供更高质量的内容。此外,深度学习技术将进一步提升视频编解码的压缩效率。随着更多样化的块划分方法和编码模式的不断涌现,以及更复杂的预测和变换技术的引入,传统视频编码算法的复杂度不断提高。深度学习技术为图像/视频编码框架定义了全新的结构范式,实现了图像和视频编码器性能的显著提升,这为图像/视频编码领域带来了新的研究思路和方向。
随着互联网技术的不断发展,产业互联网逐渐崛起,为各行各业带来了新的机遇。在这个过程中,多媒体技术在产业互联网中的应用将根据不同场景进行优化,从而更好地满足产业互联网的需求。在产业互联网中,网络协议需要根据场景需求进行优化以提高传输效率。传统的直播传输-播放模型存在诸多问题,如缓存固定、传输可靠性过高、无法区分视频帧优先级等。
针对这些问题,在消费互联网中的WebRTC通信模型基础上,进行优化,在网络时延、QoE和可靠性等进行优化,对场景需求进行最优匹配。比如在2B2C的场景中,通过(1)信令改造,利用miniSDP和0-RTT的结合,大幅减少信令耗时、提升信令交互成功,进而降低首帧耗时和提升开播成功率。(2)音视频改造,让WebRTC支持AAC,H.265,附加前向纠错,抗50%以上丢包。还引入了B帧,增强了画质,同时大幅减少了码率。(3)传输改造,采样柔性分级丢帧的传输策略来渐进式降低码率,以适应弱网情况。支持P2P分发网络,能够将看同一视频流的用户群就近地组织成网络,相互分享传输。实现延时可降低到800ms以内,并同时兼顾延时、卡顿和首帧耗时,综合QoS远超传统直播。可以广泛应用在电商直播、体育赛事直播等领域另外一些场景,比如远程作业等2B场景,通过(1)信令改造:提升信令链路对网络异常抵抗能力,减少网络异常恢复时间,提升视频应用稳定性。(2)音视频改造,优化相机采集、视频渲染和视频编解码耗时,从音视频处理层面减少端到端画面延迟。(3)传输改造,以减少视频传输延迟为目标,适当平衡抗丢包和抗网络波动能力,减少视频延迟;并引入多网传输策略,减少单一网络依赖,提升传输稳定性。实现了画面延时可降低到100ms以内,兼顾抗弱网能力,在工业远程作业、医疗等领域应用前景广泛。
脑机接口(BCI,brain-computer interface),是在人或动物脑与外部设备间建立的直接连接通路,实现大脑与外部设备的直接交互。根据传感器或电极植入部位不同,主要分为非侵入式(Non-invasive)和侵入式(Invasive)两大类。
如果从1924年德国医生汉斯·伯格开发脑电图(EEG)算起,脑机接口经过百年的近现代技术发展,已形成一系列基本的技术研究和应用范式。然而,由于对人脑原理研究认识进展的缓慢和局限性,目前脑机接口整体仍处于发展早期。
近年来在数字技术尤其AI不断突破的加持下,加上生物相容性电极、小型化设计与集成、微创植入、多模式传感器等关键技术进展,脑机接口呈现出加速发展的趋势。预计医疗、军事、教育、混合现实交互、类脑智能等领域将发挥重点带动作用,全球商用市场将以17%的年平均增长率到2030年突破60亿美元。从长远看,脑机接口的意义更为重大,是人类应对人工智能威胁、减弱老龄化社会冲击、探索人类本质等重大问题,构建人机和谐社会的重要路径之一。
三、脑机接口与人工智能相辅相成,成为促进人机和谐共生的重要路径之一
生成式AI爆发带来潜在威胁,提高了脑机接口发展的必要性。脑机接口有望架设人脑与数字体、机器等的高速连接,增强人脑能力避免被直接替代,同时促进更安全、高效的AI发展。类脑智能成为重点发展方向之一,主要有两方面:
提高大脑解读能力:AI大模型等技术的加速突破,能支持更高效处理脑机接口采集的大量脑信号,提升对大脑文字、影像等信息解码与重建效率,促进大脑信息处理机制等的基础研究。如大阪大学研究团队基于扩散模型,成功重建通过功能近红外光谱(fMRI)获得的人脑活动图像。
促进类脑计算发展:脑机接口促进脑数据采集和脑科学研究,能反过来支持类脑计算的框架、算法、芯片等技术创新,跳出冯-诺伊曼计算结构局限,推动更低功耗、高效率、可信可控的AI发展。如IBM推出类脑芯片原型NorthPole,相比传统CPU大幅提升能效25倍。
未来随着脑机接口和AI结合的进一步深入,长期有望促成新的类脑计算结构体系、赛博格(人机融合体)、脑联网等的发展突破,降低AI风险、促进人机和谐共生。
未来连接
信息通信技术作为第三次科技革命的核心力量,自诞生起就以“Anytime,Anywhere,Anyone,Anything”为终极目标。如今的地球上,地面蜂窝网络已经覆盖了70%的人口,但覆盖的地表面积实际只有20%。当发生摧毁通信设施的自然灾害或身处无网络地区的人为事故时,“失联”的悲剧仍然难以避免,这也为攻克“紧急状态通信”这一难关提出了迫切需求。星地直连通信技术就是在这样的背景下发展而来,迄今已取得很大进步。2022年底,苹果公司、华为公司相继发布了支持短报文(类似手机短信功能)应急通信服务的新款手机。2023年,华为又推出了Mate 60Pro手机,依托天通卫星实现了星地直连语音通信。这一系列技术突破和产品创新,预示着星地直连通信已步入实用化的快车道。据美国市场分析公司ABI Research预测,随着NTN(非地面网络)技术不断发展,预计到2030年,全球将有1.7亿台NTN移动终端设备,产生的收入将达163亿美元,从2022年至2030年的复合年均增长率将达76%(过去10年为22%),基于手机直连卫星的泛在网络覆盖的时代即将到来。
随着城市化进程加速,交通拥堵和环境污染问题日益突出,人类社会对绿色高效的交通方式的需求日益迫切。因此,开发低空空域、实现低空出行、发展低空经济已成为解决这些问题的重要选择之一。由电动垂直起降飞行器(electric vertical take-off and landing,eVTOL)驱动的空中交通被视为推动低空经济发展的核心引擎。eVTOL采用以新能源电池作为动力的分布式电推进系统,能有效降低飞行噪音和提升操作系统的安全性,同时实现垂直起降、无需跑道,是一种理想的绿色智能交通工具。
从未来产业发展来看,eVTOL应用场景广阔。现阶段最主要的是替代直升机,在测绘、消防救援、电力巡线、警用巡查、医疗救护、搜救、海上石油钻井、农业植保、农业飞防等领域广泛应用。而行业内普遍期望,eVTOL能广泛应用于以城市和区域出行为主的空中载人客运。在不同应用场景中,载人客运是必然的核心发展方向,因为人的时间价值远远高于货物。预计eVTOL率先在载货物流、城市服务、消防救灾等场景开始商业化运营,随着技术发展和市场成熟,载客eVTOL将迈入大规模商业化时代。电池续航里程提升,使得eVTOL主机厂在机型研发方面更倾向于城际和区域出行类型的机型,主要是由以下因素驱动:城际和区域出行的单位经济效益高、为客户节省的时间多、所需的飞行频率和机队密度较低和公众接受度高。当前载人客运的展示和试点推广日趋火热,2024年奥运会和2025年世博会的试运营计划或开启“eVTOL元年”。未来十年,在政府、产业巨头和民间资本的助推下的eVTOL低空交通领域,产业发展与投资局面很可能发生剧变。
面对多元化应用场景需求,eVTOL在关键核心技术,特别是飞行器构型设计方面,仍处于验证比较、市场选择到大规模应用的“前夜”,但数字技术加速和赋能已成共识,并在实践中落地。综合国内外情况来看,eVTOL在科技创新方面呈现“电动化、长续航、智能化”三大技术趋势:
eVTOL在商业化的过程中形成了不同构型或技术路线,其中多旋翼构型实现技术路线简单,但有效载荷和航程相对有限;矢量推进构型(倾转旋翼、涵道)和复合翼构型eVTOL在航程、巡航速度和载重比方面优势明显,具有较好的有效载荷、最大起飞重量和运营经济性,更适合在城际运输等空中交通商业场景中应用推广。随着电池技术发展,复合翼及矢量推进构型相对于多旋翼的优势会越来越明显。全球900多个eVTOL设计研发项目的统计数据显示,约320个项目选择矢量推进构型,约260个选择多旋翼构型,约150个选择复合翼构型,其他项目选择悬停自行车和个人飞行器、电动旋翼机设计。
第二,高能量密度锂电池的技术突破,进一步提升eVTOL续航里程。
电池技术突破助力eVTOL实现中长距离城际飞行。锂电池因其高能量密度和安全性成为大多数eVTOL主机厂的首选动力来源,尤其在目标航程约200-300公里的范围内,其能源效率和成本优势明显。头部企业认为电池能量密度在300Wh/kg以上,eVTOL性能已经展现出比较好的商业化能力。目前,业界最领先的航空级别电池的能量密度有望达到500Wh/kg,将会极大提升eVTOL续航里程,有潜力支持现有厂商的机型飞行400-500公里。总体而言,eVTOL电池的下一步研发目标是在保证航空安全的前提下,提高电池能量密度并以业界可接受的成本实现量产。
氢能应用潜力大但受限于总成本高和技术成熟度低,导致氢能源飞机的商业化进程缓慢。长期来看,氢燃料电池的能量密度最高可达锂电池的数百倍,具有广阔的应用前景。短期内,由于成本、重量、储运和潜在安全风险等因素的限制,氢能电池的应用空间仍然有限。德国创业公司H2FLY近年推出了一款液态氢飞机HY4,该飞机为双体式、四座位、单发设计,主要用于技术验证和演示;空中客车等公司则计划在2035年前推出氢能飞机。
第三,“软件定义飞行器”和空中交通管理智能化共同加速无人驾驶愿景。
得益于智能驾驶技术发展与政策支持等有利因素,eVTOL飞行器正逐步从传统的有人驾驶模式过渡到更高效的无人驾驶模式,呈现出“软件定义飞行器”的趋势。未来eVTOL在空中交通竞争中的关键既包括飞行器设计和性能,也包括以AI为核心的软件技术,同时还需要配备高效的数字化空中交通管理系统来支持大量无人驾驶eVTOL运行。
在早期推广阶段,为了使eVTOL符合适航安全要求以及更容易被乘客接受,主机厂可能会为早期机型配备飞行员或安全员、延后无人驾驶eVTOL研发计划,或同时研发无人驾驶和有人驾驶eVTOL。然而,从长远来看,实现自主飞行、取消飞行员是降低运营成本、提高经济效益的必然选择。亿航、峰飞和波音公司旗下的Wisk专注研发无人驾驶飞行器,亿航已获得我国颁发的适航证,峰飞计划在配备安全员的前提下进行商业试运营,而Wisk计划在2028年洛杉矶奥运会期间才会开始试运行无飞行员、全自主飞行的飞行器。
此外,低空基础设施建设将助力高效安全空中交通管理,加速低空空域开放和利用进程。eVTOL在低空运行、服务公众,流量大于现有通航直升机。尽管eVTOL航空器数量远低于城市内网约车,但其运行环境为三维,受天气等因素影响,复杂性和不确定性较高。数字技术可通过以下途径助力空中交通管理智能化:(1)低成本、高精度、高可靠性的通信、导航、监视系统,实时获取航空器信息,降低航空器间隔,提高空域流量和安全性;(2)基于传统气象雷达以及激光雷达等新一代传感器收集的气象数据,结合AI大模型等技术,为低空飞行带来更精准、网格化的气象服务;(3)基于云计算、边缘计算、深度学习和人工智能的管控和调度系统,为eVTOL飞行提供决策支持,如实时航路规划、起降场选择;(4)集成多种技术的空域数字化平台为空域管理部门进行空域设计、航道规划、模拟测试提供数字化工具。
随着新能源技术和信息技术的不断发展与成熟,在双碳目标背景下,虚拟电厂逐渐显现出其在能源结构转型中的关键作用,成为实现能源优化配置的重要解决策略。在未来电网的构成中,源端、负荷端和储能端三个关键部分正在经历显著变革。具体而言,源端将见证波动性清洁能源以大规模、高比例的方式接入电网;在负荷端,越来越多的用户正逐渐转变为发电、储能及电网响应的参与者;而在储能端,电化学储能技术的发展及氢储能技术的研究,正大幅降低能量存储与运输的成本。
过去,虚拟电厂的应用范围相对有限,但现在我们需要扩展其应用至城市乃至城市间的更广阔层面。城市运行中的三大核心调节性负荷—工业、算力和交通—随着工业创新、大规模模型算力以及新能源汽车等领域的发展,其电力需求持续增长。这既是挑战,也是机遇。数字化集成的虚拟电厂能够通过承担多网耦合和协同工作,将上述几类主要用电部门转变为可调节资源。这一转变将有效应对能源结构转型带来的电网压力,确保在新能源背景下,新型电力系统的平稳转型。
可再生能源消纳以及电力电子化是实现碳中和的关键,稳定电力供应是实打实的刚性需求。随着近年来新能源行业发展,电力电子资源的不断增加,国家需要有更高效的数字化控制手段。近期在新能源及电力电子化领域发生的几项重要事件:
1、蔚来参与全国规模最大的V2G需求响应项目:2023年8月23日,车网互动验证中心(e-Park)的V2G充放电系统需求响应试验在无锡正式启动。这个系统是目前国内规模最大的V2G充放电系统,为新型电力系统建设提供了坚实的支撑。
2、山东电力交易出现“负电价”现象:“五一”期间,山东电力现货市场的实时交易电价经历剧烈波动,区间从1047.51元/兆瓦时降至-80元/兆瓦时(约1.05元/度至-0.085元/度),期间多次出现负电价,这一现象在电力市场中尤为罕见。
3、中广核新能源深圳虚拟电厂的重大成就:到2023年中,中广核新能源深圳虚拟电厂成为首批满足并网接入要求的标准化虚拟电厂,并成功参与首轮精准响应。在虚拟电厂运营商中,其响应容量和响应精度均位居前列。